Package: fwildclusterboot 0.14.3

fwildclusterboot: Fast Wild Cluster Bootstrap Inference for Linear Models

Implementation of fast algorithms for wild cluster bootstrap inference developed in 'Roodman et al' (2019, 'STATA' Journal, <doi:10.1177/1536867X19830877>) and 'MacKinnon et al' (2022), which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiple bootstrap types as described in 'MacKinnon, Nielsen & Webb' (2022) are supported. Further, 'multiway' clustering, regression weights, bootstrap weights, fixed effects and 'subcluster' bootstrapping are supported. Further, both restricted ('WCR') and unrestricted ('WCU') bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a 'heteroskedasticity-robust' ('HC1') wild bootstrap. Last, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1.

Authors:Alexander Fischer [aut, cre], David Roodman [aut], Megha Joshi [rev], Eunseop Kim [rev], Achim Zeileis [ctb], Nathaniel Graham [ctb], Susanne Koell [ctb], Laurent Berge [ctb], Sebastian Krantz [ctb]

fwildclusterboot_0.14.3.tar.gz
fwildclusterboot_0.14.3.zip(r-4.5)fwildclusterboot_0.14.3.zip(r-4.4)fwildclusterboot_0.14.3.zip(r-4.3)
fwildclusterboot_0.14.3.tgz(r-4.4-x86_64)fwildclusterboot_0.14.3.tgz(r-4.4-arm64)fwildclusterboot_0.14.3.tgz(r-4.3-x86_64)fwildclusterboot_0.14.3.tgz(r-4.3-arm64)
fwildclusterboot_0.14.3.tar.gz(r-4.5-noble)fwildclusterboot_0.14.3.tar.gz(r-4.4-noble)
fwildclusterboot_0.14.3.tgz(r-4.4-emscripten)fwildclusterboot_0.14.3.tgz(r-4.3-emscripten)
fwildclusterboot.pdf |fwildclusterboot.html
fwildclusterboot/json (API)
NEWS

# Install 'fwildclusterboot' in R:
install.packages('fwildclusterboot', repos = c('https://s3alfisc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/s3alfisc/fwildclusterboot/issues

Pkgdown site:https://s3alfisc.github.io

Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library
Datasets:
  • voters - Random example data set

On CRAN:

clustered-standard-errorslinear-regression-modelswild-bootstrapwild-cluster-bootstrapopenblascppopenmp

6.68 score 24 stars 2 packages 111 scripts 227 downloads 9 exports 19 dependencies

Last updated 1 years agofrom:336bb574eb. Checks:9 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 20 2025
R-4.5-win-x86_64OKJan 20 2025
R-4.5-linux-x86_64OKJan 20 2025
R-4.4-win-x86_64OKJan 20 2025
R-4.4-mac-x86_64OKJan 20 2025
R-4.4-mac-aarch64OKJan 20 2025
R-4.3-win-x86_64OKJan 20 2025
R-4.3-mac-x86_64OKJan 20 2025
R-4.3-mac-aarch64OKJan 20 2025

Exports:boot_aggregateboot_sscboottestglancemboottestpvalsetBoottest_engineteststattidy

Dependencies:BHclicollapsedqrngdreamerrFormulagenericsgtoolsJuliaConnectoRlatticeMASSMatrixRcppRcppArmadilloRcppEigenrlangsitmostringmagicsummclust

fwildclusterboot

Rendered fromfwildclusterboot.Rmdusingknitr::rmarkdownon Jan 20 2025.

Last update: 2023-07-08
Started: 2021-01-25

Literature on the Wild Bootstrap and Clustered Inference in Regression Models

Rendered fromLiterature.Rmdusingknitr::rmarkdownon Jan 20 2025.

Last update: 2023-04-17
Started: 2023-04-15

Readme and manuals

Help Manual

Help pageTopics
Simple tool that aggregates the value of CATT coefficients in staggered difference-in-difference setups with inference based on a wild cluster bootstrap (see details) - similar to 'fixest::aggregate()'boot_aggregate
set the small sample correction factor applied in 'boottest()'boot_ssc
Fast wild cluster bootstrap inferenceboottest
Fast wild cluster bootstrap inference for object of class felmboottest.felm
Fast wild cluster bootstrap inference for object of class fixestboottest.fixest
Fast wild cluster bootstrap inference for object of class lmboottest.ivreg
Fast wild cluster bootstrap inference for object of class lmboottest.lm
S3 method to obtain wild cluster bootstrapped confidence intervalsconfint.boottest
Check if julia or python are installed / can be found on the PATH.find_proglang
S3 method to glance at objects of class boottestglance.boottest
S3 method to glance at objects of class boottestglance.mboottest
Arbitrary Linear Hypothesis Testing for Regression Models via Wald-Testsmboottest
Fast wild cluster bootstrap inference for joint hypotheses for object of class felmmboottest.felm
Fast wild cluster bootstrap inference for joint hypotheses for object of class fixestmboottest.fixest
Fast wild cluster bootstrap inference of joint hypotheses for object of class lmmboottest.lm
S3 method to obtain the effective number of observation used in 'boottest()'nobs.boottest
S3 method to obtain the effective number of observation used in 'mboottest()'nobs.mboottest
Plots bootstrapped p-values as a function of the hypothesized effect size r for a hypothesis test of the form R beta = r.The points where the p-values are 0.05 are the boundaries of the bootstrapped confidence interval.plot.boottest
S3 method to print key information for objects of type 'bboottest'print.boottest
S3 method to print key information for objects of type 'mboottest'print.mboottest
'pval' is a S3 method to collect pvalues for objects of type 'boottest' and 'mboottest'pval
S3 method to obtain the wild cluster bootstrapped p-value of an object of type boottestpval.boottest
S3 method to obtain the wild cluster bootstrapped p-value of an object of type mboottestpval.mboottest
Sets the default bootstrap algo for the current R session to be run via 'boottest()' and 'mboottest()'setBoottest_engine
S3 method to summarize objects of class boottestsummary.boottest
S3 method to summarize objects of class mboottestsummary.mboottest
'teststat' is a S3 method to collect teststats for objects of type 'boottest' and 'mboottest'teststat
S3 method to obtain the non-bootstrapped t-statistic calculated via 'boottest()'teststat.boottest
S3 method to obtain the non-bootstrapped test statistic calculated via 'mboottest()'teststat.mboottest
S3 method to summarize objects of class boottest into tidy data.frametidy.boottest
S3 method to summarize objects of class mboottest into tidy data.frametidy.mboottest
Random example data setvoters