Package: fwildclusterboot 0.14.3
fwildclusterboot: Fast Wild Cluster Bootstrap Inference for Linear Models
Implementation of fast algorithms for wild cluster bootstrap inference developed in 'Roodman et al' (2019, 'STATA' Journal, <doi:10.1177/1536867X19830877>) and 'MacKinnon et al' (2022), which makes it feasible to quickly calculate bootstrap test statistics based on a large number of bootstrap draws even for large samples. Multiple bootstrap types as described in 'MacKinnon, Nielsen & Webb' (2022) are supported. Further, 'multiway' clustering, regression weights, bootstrap weights, fixed effects and 'subcluster' bootstrapping are supported. Further, both restricted ('WCR') and unrestricted ('WCU') bootstrap are supported. Methods are provided for a variety of fitted models, including 'lm()', 'feols()' (from package 'fixest') and 'felm()' (from package 'lfe'). Additionally implements a 'heteroskedasticity-robust' ('HC1') wild bootstrap. Last, the package provides an R binding to 'WildBootTests.jl', which provides additional speed gains and functionality, including the 'WRE' bootstrap for instrumental variable models (based on models of type 'ivreg()' from package 'ivreg') and hypotheses with q > 1.
Authors:
fwildclusterboot_0.14.3.tar.gz
fwildclusterboot_0.14.3.zip(r-4.5)fwildclusterboot_0.14.3.zip(r-4.4)fwildclusterboot_0.14.3.zip(r-4.3)
fwildclusterboot_0.14.3.tgz(r-4.4-x86_64)fwildclusterboot_0.14.3.tgz(r-4.4-arm64)fwildclusterboot_0.14.3.tgz(r-4.3-x86_64)fwildclusterboot_0.14.3.tgz(r-4.3-arm64)
fwildclusterboot_0.14.3.tar.gz(r-4.5-noble)fwildclusterboot_0.14.3.tar.gz(r-4.4-noble)
fwildclusterboot_0.14.3.tgz(r-4.4-emscripten)fwildclusterboot_0.14.3.tgz(r-4.3-emscripten)
fwildclusterboot.pdf |fwildclusterboot.html✨
fwildclusterboot/json (API)
NEWS
# Install 'fwildclusterboot' in R: |
install.packages('fwildclusterboot', repos = c('https://s3alfisc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/s3alfisc/fwildclusterboot/issues
Pkgdown site:https://s3alfisc.github.io
- voters - Random example data set
clustered-standard-errorslinear-regression-modelswild-bootstrapwild-cluster-bootstrapopenblascppopenmp
Last updated 1 years agofrom:336bb574eb. Checks:9 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 20 2025 |
R-4.5-win-x86_64 | OK | Jan 20 2025 |
R-4.5-linux-x86_64 | OK | Jan 20 2025 |
R-4.4-win-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-x86_64 | OK | Jan 20 2025 |
R-4.4-mac-aarch64 | OK | Jan 20 2025 |
R-4.3-win-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-x86_64 | OK | Jan 20 2025 |
R-4.3-mac-aarch64 | OK | Jan 20 2025 |
Exports:boot_aggregateboot_sscboottestglancemboottestpvalsetBoottest_engineteststattidy
Dependencies:BHclicollapsedqrngdreamerrFormulagenericsgtoolsJuliaConnectoRlatticeMASSMatrixRcppRcppArmadilloRcppEigenrlangsitmostringmagicsummclust
fwildclusterboot
Rendered fromfwildclusterboot.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2023-07-08
Started: 2021-01-25
Literature on the Wild Bootstrap and Clustered Inference in Regression Models
Rendered fromLiterature.Rmd
usingknitr::rmarkdown
on Jan 20 2025.Last update: 2023-04-17
Started: 2023-04-15